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The second quantization method is used to derive a recursion formula for the construction of spin 
eigenfunctions in the branching diagram method which simplifies the application of this method 
considerably. By application of this recursion formula the branching diagram functions are expressed 
as linear combinations of spin-paired functions. A one-to-one correspondence is established between 
the set of branching diagram paths and the set of spin-paired functions used to construct the branching 
diagram functions. This leads to a simple method for the construction of independent sets of spin- 
paired functions for arbitrary multiplicities. 
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1. Introduction 

The methods currently used for the construction of (anti-symmetrical) spin 
eigenfunctions may be divided into three types: synthetic [1-4] ,  analytic [3-7] ,  
and numerical [-8]. It is our purpose to show how the second quantization 
technique may be used to simplify and to relate two different types of the synthetic 
approach, viz. the genealogical construction [-2, 3] and the spin-pairing method 
[4, 9]. 

In the genealogical construction an orthonormal basis of branching diagram 
functions is generated by a recursive procedure, which leads to expansions in 
terms of simple spin products. The nmnber of steps in this procedure increases 
rapidly with the number of electrons, which makes this method cumbersome for 
configurations with a large number of singly occupied orbitals. 

The spin-pairing method, on the other hand, is easy to apply to functions 
for an arbitrary number of electrons, but it has the disadvantage that it leads to a 
basis set which is dependent. For singlet states this difficulty may be removed by 
selecting those functions which correspond to canonical Rumer diagrams [9]. 
However, for S > 0, this method fails, because the number of Rumer diagrams not 
containing crossed arrows exceeds the number of independent spin eigenfunctions. 

In the following it will be shown that branching diagram paths may be used 
instead of Rumer diagrams as an aid in the construction of an independent (but 
non-orthogonal) set of spin-paired functions for arbitrary values of S. This may be 
done by some simple rules, as will be explained in detail in Section 4. 

The orthogonalization of the spin-paired functions generated in this way 
may then be effected by a linear transformation, leading to a set of branch-diagram 
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functions. The elements of the transformation matrix may be calculated by a 
recursive procedure, which relates branching-diagram functions corresponding 
to closely related paths. As a result, the number of steps in the recursive procedure 
is decreased by a factor of 2, compared to the usual [2, 3] method. Moreover, 
by using a suitable normalization of the branching-diagram functions, the trans- 
formation coefficients may be tabulated as positive integers. This procedure will 
be outlined in Section 3. 

Some definitions and conventions to be used later are given in Section 2. 

2. Second Quantization Representation of the Genealogical Construction 
and the Spin-Pairing Method 

The functions with which we are dealing may be completely characterized 
by n, S, M, and t, defined as follows, n symbolizes a set of occupation numbers ni, 
i.e. the space weight of the function [10]. S and M correspond to the eigenvalues 
of S 2 and Sz respectively, and M is also the spin weight (n~, n~), M = �89 - np). 
t is equivalent to the Yamanouchi-symbol, corresponding to a certain path in 
the branching diagram [1, 3]. 

The recursion formulas used in the genealogical construction involve the 
addition of an c~- or//-spin function to an N-electron spin eigenfunction. In the 
second quantization formalism this is symbolized by creation operators, and the 
formulas may therefore be reformulated in second quantization representation 
in the following way. We define the fermion operators cJ, % c-J, and ~j [11], 
where cJ and c-'J are creation operators for orbitalj with ~ and fl spin, respectively, 
and c i and ~j are the associated annihilation operators. These operators satisfy 
the usual anticommutation relations [11]. 

In the following the index i will be taken for an orbital which is occupied in a 
function on which an annihilation operator acts, whereas the index r corresponds 
to an orbital which is not occupied in a function to which a creation operator is 
applied. Arbitrary orbitals are "indicated by indices j, l or k. 

For the case M = S the recursion formulas [2, 3] then take the following form: 

in', S + �89 t') = c)In, S, t) = Or(l)In, S, t ) ,  (1 a) 

In',S - - 2 , |  I f i t \  / =(2S(2S+ l ) ) -~( -c~S_ + 2S~)In,  S , t )  =C,(S,  - 1)ln, S , t ) .  (lb) 

These are also the defining equations for the shift operators C,(1) and C,(S, - 1), 
which change the eigenvalue of S 2 from S to S + �89 and S - �89 respectively. C,(l) 
is a step-up operator, which does not depend on the spin eigenvalue of the function 
to which it is applied. The step-down operator, however, does depend on S, 
and this is indicated by rendering it in the form Cr(S, - 1 ) .  Both operators are 
also shift operators with respect to the space weight n. 

We will also need expressions for shift operators in terms of the annihilation 
operators. In order to obtain these we need the following result. The usual defini- 
tion of a shift operator B with respect to A is equivalent to 

A B - B A  = (A,  B )  = k B .  
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This follows from 

A(BIa))  = {(A, B) + BA }[a) = (k + a) (Bla>) 

where an eigenfunction of A with eigenvalue a is designated by la). Moreover, 
if C commutes with A, then D = (B, C) is also a shift operator with respect to A, for 

(A, D) =(A, (B, C)) =((A, n), C) - ((A, C), B) = k(n, C) = k D .  

Now, it may be verified from the anticommutation relations and the second 
quantization expressions for the spin operators [6, 10], that the operator cj?j 
commutes with S 2 and S r Therefore the commutators Aj(1)=(Cj(1),cj~j) and 
Aj(S, - 1) =(Cj(S, - 1), ci~j) are again shift operators with respect to S z. Expansion 
of these commutators yields the desired shift operators in terms of annihilation 
operators: 

Ai(1) = ~'z, (2a) 

A~(S, - 1) = - (2S(2S + 1)) -~ (~fl_ + 2Sc~), (2b) 
with 

In', S +�89 t'> = Ai(1)In, S, t) 

In', S - �89 t"> =A,(S, - 1)In, S, t ) .  

Equations (1) and (2) may be summarized by 

In', S +�89 t') =Bj(S, t~)In, S, t ) .  

The explicit form of Bj(S, tj) is given by Eq. (2) if orbital j is occupied in In, S, t )  
and by Eq. (1) if orbital j is not occupied in In, S, t). tj = + 1, corresponding to a 
step up or drown in the branching diagram, and tj is added to the set t by operating 
with Bj(S, tj) on [n,S , t ) ,  i.e. t '={ t ,  tj}. The set t =  {tk} corresponds to the 
Yamanouchi-symbol {rk}, with r k = 1 if t k = 1 and r k = 2 if t k = - 1. 

Any spin eigenfunction pertaining to the genealogical construction may now 
be generated by repeated application of Eq. (3): 

ns 

In, s, t> = 1-[ G(Sb  t,)10> (4) 
with l= 1 

S=S,~+I  
l--1 

st:�89 Z tp>=_o 
p = l  

$1 = 0  

t a = 0 .  

n~ = number of singly occupied orbitals in In, S, t>. 
10) is a reference state to be described below. 

Functions In, S, t)  corresponding to different branching diagram paths are 
obtained by varying t~ in Eq. (4) and the basis may be made complete by taking 
all possibilities for tt with the restriction 

I 

F. tv>_-O. 
p = l  
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The functions with a fixed sequence of orbital indices form a basis (complete 
or overcomplete) spanning the associated subspace with fixed space weight, i.e. 
for an orbital configuration. Since the dimension of this subspace depends only 
on the number of singly occupied orbitals, these functions only constitute a 
complete orthonormal basis if the orbital indices jt in Eq. (4) are all different [12]. 
This may be assumed without loss of generality because the reference state ]0) 
may always be chosen such that this condition is fulfilled, e.g. by choosing for the 
reference state a closed-shell state such that the number of shift operators involved 
in the transition from this state to the configuration at hand equals the number 
of singly occupied orbitals in this configuration. Moreover, if In, S, t) is an N- 
electron state and if 10) is an No-electron state, it will be assumed that the fol- 
lowing relation holds: 

�9 ~N for N = even 
No [ N - l f o r N = o d d .  

This implies that for N = even the number of creation operators n c in Eq. (4) 
equals the number of annihilation operators n , ,  whereas for N = odd we have 
nc = rta --I.- 1. 

We now turn to the alternative method for the construction of spin eigenfunc- 
tions, viz. the spin-pairing method. In order to obtain a second quantization 
representation for this method we start by defining transition operators as 
follows 1-13]: 

= c,(�89 - 1) & ( J )  = + (5) 

If the spin eigenfunctions are generated from the reference state 10) described 
above, only those transition operators are needed, for which k e {i} and l e {r}. 
The transition operators commute with S 2, and therefore S is not changed if 
these operators are applied to a spin eigenfunction. Spin eigenfunctions with the 
same value of S as the reference state, but with different space weights may be 
generated by repeated application of transition operators: 

In, 0, Po> = f i  Ci~r~ [0> (6) 
k=l 

where p indicates that the resulting functions belong to a spin eigenfunction basis 
of spin-paired functions and In, S, Po> is the first member of this basis. 

A spin eigenfunction with an arbitrary value of S may be obtained by adding a 
certain number of step-up operators B~(1): 

2S 2S f i  
In, S, Po) = I-I Bjz(1)In', 0, Po) --- ~I Bj~(1) C,~_~,~ 10) (7) 

/=1 l=1 k=l  

with m = �89 - 2s). 
It will again be assumed that all orbital indices are different, in which case 

may be shown from the anticommutation relations for the fermion operators, that 

= ( c , . r ,  = (n  j0 ) ,  n k ( t ) ) =  0 .  (8) 
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In this case the basis is made complete by choosing a number of permutations 
�9 of orbital indices, such that an independent set of functions results. How this may 
be done will be explained in Section 4. 

Equation (7) is the second quantization equivalent of the spin-pairing method 
[4]. This may be shown as follows. If a transition operator acts on the reference 
state, a singlet function with two singly occupied orbitals is generated and con- 
sequently each factor Ci-~r in Eq. (7) corresponds to a factor (a f t - f i e )  in the 
spin-pairing method. Moreover, from Eqs. (1 a) and (2a) it follows that the step-up 
operators B;(1) correspond to factors e in In, S, 1>, and thus Eq. (7) corresponds 
to a spin function constructed from factors (eft - fie) and e, as in the spin-pairing 
method. 

3. Recursion Formulas 

The function of Eq. (7) may be expressed in terms of shift operators by using 
Eqs. (1), (2), and (5): 

2S rn 

In, S, Po> = H Bj,(1) H (Cry(�89 -- 1) A,~(1))10> = In, S, to>. (9) 
l k 

This function is identical with the branching diagram function corresponding to 
the lowest path (indicated by to). 

In order to proceed, we need the commutation relations of S_ with e~* and ~~. 
These relations follow directly from the second quantization expression for S_ 
and the anticommutation relations for the fermion operators and are found to be 

( s _ ,  d )  = 

( S _ ,  ~i) = - c i .  

All functions corresponding to higher paths may now be generated from the 
function of Eq. (9) by a recursion formula, which may be derived using this result 
and Eqs. (1)-(3) and (5). The result is 

Bj(S+�89 - 1) B , (1 )=(S+  1)-6(S*Bj(1) B~(S, - 1 ) + ( 2 S +  1)~ C,~r). (10) 

The branching-diagram functions may be ordered via the sets t = {t j} in 
exactly the same way as for the space weight n [10]. With this ordering one has 
the relation t > t', if the sequence Bj(S + �89 - 1)B~(1)when applied to the function 
In', S, t">, produces the function In, S, t>, while the function [n, S, t'> is generated 
from the same function by the sequence Bj(1) B I ( S , ,  1). 

Repeated application of Eq. (10) leads to functions of the form 

g 

In, S, t> = ~ cvtPpln , S, Po> (11) 
p 

with g = f(n, ,  S )= the dimension of the subspace with fixed space weight and 
containing n~ singly occupied orbitals and Pp is a permutation operating on the 
orbital indices i I and r I. 
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Fig. 1. Spin eigenfunctions with S = 1, n, = 4 

This may be illustrated by an example (see Fig. 1), where Eq. (8) is used in 
order to move the transition operators to the right in the spin-paired functions: 

In, S, t )  = C.(~, - 1) hb(1) Ct(1) ha(l)  10) 

= 2-~(C,(1) Ab(l, - 1) + 3~Cb_.,) C,(1) A,(1)105 

= {(3)�89 ) aa(1 ) + 2-{(~)-~C.(1)((�89 �89 - 1) + 2~Cb_~,)A,(1)} 10> 

= 6- }(3Ct(1) Aa(1 ) Cb+u"~ 2C,(1) A,(1) Cb_~t+ C,(1) Ab(1 ) Ca..t)10>. 

If, as in the above example, the function In, S, t )  expressed in the form of 
Eq. (4) contains only one step-down operator Cj(S, - 1) followed by an arbitrary 
(odd) number (2m-1 ,  say) of step-up operators Bj(1), then the coefficients cpt 
of Eq. (11) may be calculated explicitly. Repeated application of Eqs. (8) and (10) 
then yields 

m - - 1  

C,,.(m - �89 - 1) A,m(1 ) I~ (C,~(1) A,~(1))In, 0, t0> 
k=t (12a) 

2 m - 1  m - 1  

p=l k = l  

with 

cp = 2 m -  p,  (12b) 
/ ' l = l  

, [P(i~, "h+ i) Pp- 1, l = m -  (p + 1)/2 for p = odd (12c) 
rP=]P(r~ , r l+ l )Pp_ l , l=rn - -p /2  for p = e v e n ,  

An analogous formula holds for the case where the sequence starts with 
A ~ ( S , -  1) rather than C , ( S , -  1), the only difference being that Eqs. (12b) and 
(12d) are replaced by 

cp = 2m - p - 1 ; (12e) 

N(m) =((2m -- 2) (2m - 1)) -~ . (120 

From Eqs. (12b) and (12e) it is clear that with a suitably chosen normalization 
the coefficients cp have a simple form. Moreover, the normalization constant 
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N(m) may be calculated directly even though the spin-paired functions are not 
orthogonal. 

These results also hold for the general case Eq. (11), and the coefficients may 
thus be tabulated as positive integers. By repeated application of Eqs. (12) it 
may be verified that the normalization constant may always be calculated directly 
from the coefficients by 

However, in this case it is not possible to derive an explicit formula for the coef- 
ficients cp. Equation (12) then has to be applied a number of times. Fdr this 
number n, the following relation holds 

n r < � 8 9  

whereas in the conventional method n~ steps are needed. The number of terms in 
the expansion (11) is also smaller than in an expansion involving Slater deter- 
minants as basis functions, because each spinpaired function contains a number of 
determinants. This especially applies to low values of S. 

4. Independent Spin-paired Functions 

In Eq. (10) the left-hand side and the first term in the righthand side correspond 
to orthogonal branching-diagram functions. If the latter function contains p 
independent spin-paired functions Eq. (10) implies that the second term in the 
right-hand side must correspond to a function containing at least one spin-paired 
function which is independent of the p functions contained in the first term. This 
function may be extracted from the branching-diagram function by repeated 
application of Eq. (10) to the reference state In, S, to). Each time the first term in 
the right hand side of Eq. (10) is discarded. The number of singly occupied orbitals 
in the branching diagram part of the second term decreases by two and by moving 
the transition operators to the right (using Eq. (8)), this eventually leads to a 
spin-paired function of the form 

In, S, p> = ep[n, s, po> (13) 

with In, S, P0) given by Eq. (7). Since the transition operators commute with each 
other and with the step-up operators, this function is uniquely determined by the 
form of the branching diagram path. Consequently each time a new branching 
diagram function is generated by applying Eq. (10), a new permutation P, (corre- 
sponding to a unique independent spin-paired function In, S, p)) is generated. 
Therefore a one-to-one correspondence exists between the set of branching 
diagram paths and the basis of spin-paired functions generated by our method. 

The construction of an independent set of spin-paired functions may also be 
realized by the following procedure, which must be applied for each branching- 
diagram path in turn. 

Find two orbital indices k and l (k < l), such that the associated shift operators 
Bk(l ) and Bt(S , - 1) are neighbours in the branching diagram function, Eq. (4). 
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Replace Bk(1 ) Bl(S  , - 1) by a transition operator (Ck_~ l or Cl~k),  and remove the 
steps corresponding to k and 1 from the branching diagram path. The operators 
B k - 1  and B~+I thus become neighbours in the function associated with the 
remaining part of the branching diagram path. This procedure is repeated until 
all operators Bk(S , - - 1 )  are removed and the result is a function of the form 
of Eq. (13). 

This method is a generalization of the Rumer diagram method [9] to arbitrary 
values of S. In the latter method one selects all diagrams which contain only 
non-crossing arrows, but this restriction is only sufficient for S = 0. For S > 0 the 
number of canonical Rumer diagrams is larger than the number of independent 
spin-paired functions. The present method corresponds to a selection of those 
canonical Rumer diagrams which may be associated with an independent set of 
spin-paired functions. This may easily be shown by the following argument. 
Replacing the operators Bk(1) B~(S, --  1) by a transition operator in a branching 
diagram function corresponds to drawing an arrow connecting k and I in a Rumer 
diagram. Since k and I always correspond to neighbour positions in the branching 
diagram path, the arrows in the Rumer diagram cannot cross. Therefore the Rumer 
diagram corresponding to a spin-paired function constructed by the present 
method will be one of the canonical diagrams. 

References 

1. Yamanouchi,T.: Proc. Phys. Math. Soc. (Japan) 19, 436 (1937) 
Rutherford, D. F.: Substitutional analysis. Cambridge, England: University Press 1948 
McIntosh, H.V.: L Math. Phys. 1, 453 (1960) 
Coleman, A.J.: Advan. Quantum Chem. 4, 83 (1968) 

2. Kotani, M., Amemiya, A., Ishiguro, E., Kimura, T.: Tables of molecular integrals. Tokyo: Maruzen 
1963 

3. Pauncz, R.: Alternant molecular orbital method. London: Saunders 1967 
4. McWeeny, R., Sutcliffe, B.T.: Methods of molecular quantum mechanics. London: Academic Press 

1969 
5. L/Swdin, P.-O.: Phys. Rev. 97, 1509 (1955)i Rev. Mod. Phys. 34, 520 (1962); Rev. Mod. Phys. 36, 

966 (1964) 
6. Kouba, J., Ohrn, Y.: Intern. J. Quant~um Chem. 3, 513 (1969) 
7. Smith,V.H., Harris, F.E.: J. Math. Phys. 10, 771 (1969) 
8. Schaefer III, H.F.: J. Comp. Phys. 6, 142 (1970)i 

Kuprievich, V. A., Kruglyak, Y.A., Mozdor, E.V.: Croat. Chem. Acta 43, 1 (1971) 
9. Rumer, G.: G/fttinger Nachr. 1932, 377 

Eyring, H., Walter, J., Kimball, G. E.: Quantum chemistry. New York: Wiley 1944 
10. Moshinsky, M.: In: Moshinsky, M., Brody, T.A., Jacob, G. (Eds.): Many-body problems and other 

selected topics in theoretical physics, Vol. I. New York: Gordon and Breach 1966 
Moshinsky, M.:J. Math. Phys. 4, 1128 (1963) 

11. Merzbacher, E.: Quantum mechanics, 2nd Ed., Chapters 20 and 21. New York: Wiley 1970 
12. Harris, F.E.: Advan. Quantum Chem. 3, 61 (1967) 
13. Simons, J.: J. Chem. Phys. 55, 1218 (1971) 

Dr. P. J. A. Ruttink 
Theoretical Chemistry Group 
Rijksuniversiteit Utrecht 
Padualaan 8 
Utrecht, The Netherlands 


